2.6.1 Examples for the determination of the coefficient of restitution ترجمه - 2.6.1 Examples for the determination of the coefficient of restitution فارسی چگونه می گویند

2.6.1 Examples for the determinatio

2.6.1 Examples for the determination of the coefficient of restitution
Particle-wall coefficients of restitution can be measured by using impact dropping techniques,
Figure 2.17, [69,71,84,85].
Figure 2.17: Typical experimental particle dropping setup for impact tests [69].
Parameters characterizing impacts in a quantitative way include coefficient of normal
restitution, coefficient of tangential restitution, impulse ratio, and angular velocity. In the case
of spherical particles the normal coefficient of restitution can be calculated as the ratio
between the final velocity after the impact and the initial velocity before the impact. For non-
60
spherical particles, the impact results in a more complex trajectory involving particle rotation
and therefore the description of such impact is more complicated [71]. Depending on the
characteristic of the impacting bodies it was also found that the coefficient of restitution, in
some cases, can vary quite dramatically with impact speed and therefore it can be a function
of operating conditions.
Only the coefficient of restitution is needed to describe a collinear impact while the
coefficient of tangential restitution and angular velocity are additionally necessary to fully
describe an oblique impact. The effects of incident velocity, geometrical and material
properties on the coefficient of restitution was studied in detail for a large sphere (steel ball,
glass ball, malachite ball, cricket ball or billiard ball) impacting against a wall (steel or
rubber) at different angles 0–60° [69]. The coefficient of normal restitution decreases slowly
with an increase in incidence velocity but not as previously found from other studies in
manner of e∝v
−1/4
. The speed ranges investigated are typical of tumbling mills, hence in this
case it can be treated as aconstant in DEM simulations.
The effect of formulation on the coefficient of normal restitution was investigated in case of
pharmaceutical tablets as a function of material properties (elastic modulus and solid fraction)
and collision conditions (type of substrate material and impact velocity) by using a drop
impact tester [85]. In this case the coefficient of restitution generally increases with increasing
compact solid fraction and, therefore, it was proved that is lower for more plastic collisions
and higher for elastic collisions. It was also observed that the coefficient of restitution is
dependent on the velocity atwhich the tablet impacts the substrate.
The dependency of the coefficient of restitution on impact velocity was also numerically
demonstrated using finite element method (FEM) simulation by calculating the dissipated
energy [86]. For impacts of an elastic spherical particle with an elastic substrate the
61
coefficient of restitution is a function of the thickness of the substrate material since the
number of reflections of stress wave propagation vary during contact. In the case of a thin
substrate the coefficient of restitution is very close to unity since in that case the number of
reflections would be equal to or higher than one. For the impact with a thicker substrate there
would not be any reflection and the energy is dissipated in wave propagation through the
material. In this case the coefficient of restitution decreases as the impact velocity increases,
indicating an increased proportionof kinetic energy is dissipated. The impact of an elasticplastic surface involving plastic deformation the plastic deformation is the dominant energy
dissipation mechanism, as the energy loss due to stress wave propagation is relatively small
and hence the coefficient of restitution is found also to be dependent on the impact velocity.
It was also experimentally confirmed that for elastic-plastic materials, impact energy recovery
is a function of impact velocityby using free-fall impact tests for different type of granules
[87].Therefore, the coefficient of restitution is often a function of the relative velocities of the
two impacting bodies. In some cases it was found that the coefficient of restitution below a
certain speed is almost constant and in other cases it varies quite dramatically with the speed
and therefore it can be function of the operating conditions. However, the value of the
coefficient of restitution is usually kept constant in the DEM simulations. Further, evidence of
measurements of the coefficient of restitution are given for large particles and tablets with
collisions against a particle-wall material substrate. Obtaining the particle-particle coefficient
of restitution for small particles is still challenging since it is difficult to setup an experiment,
which would achieve a perfect normal impact between two small particles.
62
2.6.2 Examples for the determination of particle mechanical properties: elastic modulus,
plastic yield, particles strength and hardness
Determining input parameters regarding mechanical properties for different scales of particle
size is well established and widely applied in literature. Single particle mechanical properties
such as elastic properties, plastic yield, particle strength and hardness, can be calculated by
application of contact mechanic theories and particle compression techniques, Figure 2.18, for
large particles [71,88,89,90] or micromanipulation techniques [91,92] and indentation
techniques [93,94,95] for small particles.
Figure 2.18: (a) Compression single sodium benzoate granule [88]. (b) Micromanipulation
technique University of Birmingham (UK) [96]. (c) Schematic representation of
nanonindentation [93].
63
Single particle compression and nanoindentation is extensively presented in Chapter 3
specifically on the determination of mechanical properties ofZSM5 zeolite particles. Single
particle compression tests were used to measure the reduced elastic modulus and strength for
single close-to-spherical zeolite particlesassuming Hertzian contact and nanoindentation for
determination of hardness and reduced elastic modulus.
With smaller scale experiments technique such as micromanipulation techniques (e.g.
maximum transducer load ~100 g) can be used to determine mechanical strength and
deformation behaviour for small and weak particles. Particles can be compressed between the
flat end of a glass fibre (micromanipulation probe) and a glass surface (the bottom of a glass
chamber containing the individual particles) by using micromanipulation techniques and
application of contact mechanics theory to determine their mechanical properties. For
example, small elastic-plastic pharmaceutical particles (diameter
0/5000
از: -
به: -
نتایج (فارسی) 1: [کپی کنید]
کپی شد!
2.6.1 نمونه برای تعیین ضریب بازگشت ذرات دیوار ضرايب اعاده را می توان با استفاده از تاثیر انداختن روش های اندازه گیری، 2.17 شکل [69,71,84,85]. 2.17 شکل: نمونه آزمايش ذرات انداختن راه اندازی برای آزمایش تاثیر [69]. پارامترهای توصیف اثرات در راه كمي شامل ضريب عادی اعاده ضريب اعاده مماسی نسبت ضربه و سرعت زاویه ای. در مورد ذرات کروی ضریب عادی بازگشت به عنوان نسبت محاسبه می شود بین سرعت نهایی پس از تاثیر و سرعت اولیه قبل از ضربه. برای غیر60ذرات کروی، در نتیجه تاثیر در خط سیر پیچیده تر شامل چرخش ذرات و بنابراین توضیحات چنین تاثیر پیچیده تر [71]. بسته به نوع مشخصه بدن impacting آن نیز که ضریب بازگشت، در یافت شد برخی از موارد می تواند کاملا به طور چشمگیری با سرعت تاثیر متفاوت و بنابراین می توان آن را یک تابع از شرايط عملكرد.تنها ضریب بازگشت برای توصیف تاثیر خط مستقیم واقع شونده در حالی که مورد نیاز است ضريب مماسی اعاده و سرعت زاویه ای هستند علاوه بر این لازم است به طور کامل تاثیر مایل را توضیح دهید. اثر سرعت حادثه، هندسی و مواد خواص در ضریب بازگشت در جزئیات بزرگ کره (توپ فولاد، مورد بررسی قرار توپ شیشه ای مالاکیت توپ کریکت توپ یا توپ بیلیارد) تأثیر در برابر دیوار (فولاد یا لاستیک) در زوایای مختلف 0 – 60 درجه [69]. ضریب بازگشت عادی به آرامی کاهش می یابد با افزایش در سرعت بروز اما نه به عنوان پیش از مطالعات دیگر در بر داشت شیوه e∝v−1/4. محدوده سرعت مورد بررسی معمولی از غلت میلز، از این رو در این حال مورد آن را به عنوان aconstant در شبیه سازی های تو درمان می شود.اثر فرمول ضریب بازگشت عادی در بررسی شد دارویی به عنوان یک تابع از خواص مواد (مدول الاستیک و کسر جامد) و شرایط برخورد (نوع بستر مواد و تاثیر سرعت) با استفاده از یک قطره تاثیر تستر [85]. در این صورت ضریب بازگشت به طور کلی با افزایش را افزایش می دهد کسر جامد فشرده و لذا به آن ثابت شد که پایین تر برای برخورد بیشتر پلاستیک و بالاتر برای برخورد الاستیک. آن همچنین مشاهده شد که ضریب بازگشت است وابسته به سرعت atwhich قرص بستر اثرات.وابستگی ضریب بازگشت بر اثر سرعت در هم عددی است نشان داده شده با استفاده از المان محدود (FEM) روش شبیه سازی با محاسبه dissipated انرژی [86]. برای اثرات ذرات کروی الاستیک با بستر الاستیک 61ضریب بازگشت است تابع ضخامت مواد بستر از زمان number of reflections of stress wave propagation vary during contact. In the case of a thin substrate the coefficient of restitution is very close to unity since in that case the number of reflections would be equal to or higher than one. For the impact with a thicker substrate there would not be any reflection and the energy is dissipated in wave propagation through the material. In this case the coefficient of restitution decreases as the impact velocity increases, indicating an increased proportionof kinetic energy is dissipated. The impact of an elasticplastic surface involving plastic deformation the plastic deformation is the dominant energy dissipation mechanism, as the energy loss due to stress wave propagation is relatively small and hence the coefficient of restitution is found also to be dependent on the impact velocity.It was also experimentally confirmed that for elastic-plastic materials, impact energy recovery is a function of impact velocityby using free-fall impact tests for different type of granules [87].Therefore, the coefficient of restitution is often a function of the relative velocities of the two impacting bodies. In some cases it was found that the coefficient of restitution below a certain speed is almost constant and in other cases it varies quite dramatically with the speed and therefore it can be function of the operating conditions. However, the value of the coefficient of restitution is usually kept constant in the DEM simulations. Further, evidence of measurements of the coefficient of restitution are given for large particles and tablets with collisions against a particle-wall material substrate. Obtaining the particle-particle coefficient of restitution for small particles is still challenging since it is difficult to setup an experiment, which would achieve a perfect normal impact between two small particles.622.6.2 Examples for the determination of particle mechanical properties: elastic modulus, plastic yield, particles strength and hardness Determining input parameters regarding mechanical properties for different scales of particle size is well established and widely applied in literature. Single particle mechanical properties such as elastic properties, plastic yield, particle strength and hardness, can be calculated by application of contact mechanic theories and particle compression techniques, Figure 2.18, for large particles [71,88,89,90] or micromanipulation techniques [91,92] and indentation techniques [93,94,95] for small particles. Figure 2.18: (a) Compression single sodium benzoate granule [88]. (b) Micromanipulation technique University of Birmingham (UK) [96]. (c) Schematic representation of nanonindentation [93]. 63Single particle compression and nanoindentation is extensively presented in Chapter 3 specifically on the determination of mechanical properties ofZSM5 zeolite particles. Single particle compression tests were used to measure the reduced elastic modulus and strength for single close-to-spherical zeolite particlesassuming Hertzian contact and nanoindentation for determination of hardness and reduced elastic modulus.With smaller scale experiments technique such as micromanipulation techniques (e.g. maximum transducer load ~100 g) can be used to determine mechanical strength and deformation behaviour for small and weak particles. Particles can be compressed between the flat end of a glass fibre (micromanipulation probe) and a glass surface (the bottom of a glass chamber containing the individual particles) by using micromanipulation techniques and application of contact mechanics theory to determine their mechanical properties. For example, small elastic-plastic pharmaceutical particles (diameter <200 µm) were compressed by micromanipulation to determine Young’s modulus, hardness and nominal rupture stress were determined by micromanipulation [91]. Young’s modulus as a function of compression speed and force relaxation were determined for even smaller viscoelastic agarose microspheres (mean diameter 15-22 µm) [92].2.6.3 Examples for the determinationof particle friction propertiesThere are a limited number of studies considering the determination of friction coefficients as input parameters for DEM. For example, with the Hertz Mindlin contact model implemented into EDEM software, static and rolling friction values should be defined. The term static friction is the ratio of tangential force to the load applied in normal direction for two bodies in contact when the initial movement of contacting surfaces is being considered. The term kinetic friction (sliding friction) is the ratio of the steady-state tangential force to the load 64applied in normal direction for the two surfaces already in reciprocal movement. Rolling friction relatesto the interaction between two surfaces where one of them is rolling without slipping [97]. The coefficient of rolling friction accounts for the resistance of the rolling motion of a body in contact over another. This was initially implemented in DEM codes to account for the hysteric losses due to the contact between deformable materials. Now it is generally implemented to account for the rolling resistance due to the non-sphericity of particles [98].By using a shear cell (ref. Chapter 3), the effective angle of internal friction and the internal coefficient of friction canbe measured for both particle-particle and particle-wall materials. This is done by determining the yield locus generated by repetitive vertical loading of the bulk material by a normal stress and application of shear deformation. However, this is a bulk measurement under consolidation conditions and considering the definition of friction for DEM as static and rolling, the shear cell measures an amalgam of the two terms. By using such devices there is an issue as how to decouple the two and to “translate” this bulk measurement in semi-static conditions to the micro-level particle-particle or particle-wall coefficients. Measurements for coefficient of kinetic friction and rolling friction have been developed for pharmaceutical tablets and capsules. A pin-on-disk tribometer was used to measure the kinetic inter-tablet friction and tablet substrate (metals or polymers) kinetic friction coefficients [97]. The system is depicted in Figure 2.19; the single tablet is glued on the vertical pin and isvertically loaded (5 N) against the rotating disk (1.0 cm s−1). The shear force acting on the pin created through the sliding contact of the tablet with the disk is measured and it is used to calculate the coefficient of kinetic friction for any combinati
ترجمه، لطفا صبر کنید ..
نتایج (فارسی) 2:[کپی کنید]
کپی شد!
2.6.1 نمونه هایی برای تعیین ضریب جبران
ضرایب ذرات دیوار جبران می توان با استفاده از تکنیک های تاثیر حذف، اندازه گیری
شکل 2.17، [69،71،84،85]
شکل 2.17: نمونه تجربی ذرات رها راه اندازی برای تاثیر آزمون [69].
پارامترهای اثرات مشخص در راه کمی شامل ضریب نرمال
استرداد، ضریب جبران مماسی، نسبت تکانه و سرعت زاویه ای. در مورد
ذرات کروی ضریب طبیعی استرداد می تواند به عنوان نسبت محاسبه
بین سرعت نهایی که بعد از ضربه و سرعت اولیه قبل از ضربه. برای غیر
60
ذرات کروی، نتایج تاثیر در مسیر شامل چرخش ذرات پیچیده تر
و در نتیجه توصیف چنین تاثیر پیچیده تر [71] است. بسته به
ویژگی های بدن تأثیر آن بود همچنین نشان داد که ضریب جبران، در
برخی از موارد، می تواند با سرعت تاثیر متفاوت کاملا به طور چشمگیری و بنابراین می توان آن را یک تابع
از شرایط عملیاتی.
فقط ضریب جبران مورد نیاز است برای توصیف یک تاثیر خط مستقیم واقع شونده در حالی که
ضریب جبران مماسی و سرعت زاویه ای علاوه بر این لازم است به طور کامل
تاثیر مایل توصیف می کنند. اثرات سرعت حادثه، هندسی و مواد
خواص در ضریب جبران برای یک کره بزرگ (توپ های فولادی، در جزئیات مورد بررسی قرار گرفت
توپ شیشه ای، توپ مالاکیت، توپ کریکت یا توپ بیلیارد) تأثیر در برابر یک دیوار (فولاد و یا
لاستیک) در مختلف زاویه 0-60 درجه [69]. ضریب جبران عادی به آرامی کاهش می یابد
با افزایش سرعت بروز اما همانطور که قبلا از مطالعات دیگر در یافت نشد
شیوه ای از eαv
-1/4
. محدوده سرعت مورد بررسی قرار نوعی از کارخانه های تولید غلت هستند، از این رو در این
مورد می توان آن را به عنوان aconstant در شبیه سازی DEM درمان می شود.
اثر فرمولاسیون در ضریب جبران نرمال در صورت مورد بررسی قرار گرفت
قرص دارویی به عنوان تابعی از خواص مواد (مدول الاستیک و بخش جامد)
و شرایط برخورد (نوع ماده بستر و سرعت ضربه) با استفاده از یک قطره
تستر تاثیر [85]. در این حالت ضریب جبران به طور کلی با افزایش را افزایش می دهد
کسر جامد جمع و جور و، در نتیجه، ثابت شده است که برای برخورد پلاستیکی بیشتر پایین تر است
و بالاتر برای برخورد الاستیک. همچنین مشاهده شد که ضریب جبران است
وابسته به سرعت atwhich اثرات قرص بستر.
وابستگی ضریب جبران در سرعت ضربه نیز عددی شد
نشان داد با استفاده از روش المان محدود (FEM) شبیه سازی با محاسبه تلف
انرژی [86 ]. برای اثرات ذرات کروی الاستیک با بستر الاستیک
61
ضریب جبران تابعی از ضخامت مواد بستر است از
تعداد بازتاب انتشار موج تنش در طول تماس متفاوت است. در مورد نازک
بستر ضریب جبران بسیار نزدیک به وحدت از سال در آن صورت تعداد است
بازتاب خواهد بود برابر یا بالاتر از یک. برای برخورد با یک لایه ضخیم تر وجود دارد
خواهد بود هر گونه انعکاس نیست و انرژی در انتشار موج از طریق پراکنده
مواد. در این حالت ضریب جبران با افزایش سرعت ضربه کاهش می یابد،
نشان می دهد افزایش انرژی جنبشی proportionof پراکنده شده است. تاثیر سطح elasticplastic شامل تغییر شکل پلاستیک تغییر شکل پلاستیکی انرژی غالب است
ساز و اتلاف به عنوان از دست دادن انرژی به دلیل استرس انتشار موج نسبتا کوچک است،
و از این رو ضریب جبران نیز که وابسته به سرعت ضربه باشد.
این بود همچنین تجربی تایید کرد که مواد الاستیک و پلاستیک، بازیافت انرژی تاثیر
یک تابع از تاثیر velocityby با استفاده از آزمون ضربه سقوط آزاد برای انواع گرانول است
[87] .بنابراین، ضریب جبران اغلب تابعی از سرعت نسبی
دو بدن تأثیر. در برخی از موارد مشخص شد که ضریب جبران زیر
سرعت خاص تقریبا ثابت است و در موارد دیگر از آن متفاوت کاملا به طور چشمگیری با سرعت
و در نتیجه می توان آن را تابعی از شرایط عملیاتی. با این حال، ارزش
ضریب جبران است که معمولا در شبیه سازی DEM ثابت نگه داشته است. علاوه بر این، شواهدی از
اندازه گیری از ضریب جبران برای ذرات بزرگ و قرص با توجه به
برخورد در برابر یک لایه مواد ذرات دیوار. به دست آوردن ضریب ذره ذره
از جبران برای ذرات کوچک است که هنوز هم از آن به چالش کشیدن برای راه اندازی یک آزمایش، دشوار است
که می تواند تاثیر نرمال کامل بین دو ذره کوچک دست یابد.
62
2.6.2 نمونه هایی برای تعیین خواص مکانیکی ذرات: مدول الاستیک ،
عملکرد پلاستیک، ذرات استقامت و سختی
تعیین پارامترهای ورودی در مورد خواص مکانیکی برای مقیاس های مختلف از ذرات
اندازه بخوبی اثبات شده است و به طور گسترده ای در ادبیات استفاده شود. تنها ذرات خواص مکانیکی
مانند خواص الاستیک، عملکرد پلاستیکی، قدرت و سختی ذرات، می توان با محاسبه
کاربرد این نظریه مکانیک تماس و تکنیک های فشرده سازی ذرات، شکل 2.18، برای
ذرات بزرگ [71،88،89،90] یا تکنیک دستکاری میکروسکوپی [ 91،92] و دندانه
. تکنیک های [93،94،95] برای ذرات کوچک
شکل 2.18: (الف) فشرده سازی تنها گرانول بنزوات سدیم [88]. (ب) دستکاری میکروسکوپی
دانشگاه روش بیرمنگام (UK) [96]. (ج) نمایندگی شماتیک از
nanonindentation [93].
63
فشرده سازی ذرات تنها و nanoindentation گسترده است که در فصل 3 ارائه
به طور خاص در تعیین خواص مکانیکی ofZSM5 ذرات زئولیت. تنها
تست فشرده سازی ذرات برای اندازه گیری مدول الاستیک کاهش می یابد و قدرت برای استفاده شد
تنها نزدیک به کروی زئولیت particlesassuming تماس با هرتز و nanoindentation برای
تعیین سختی و مدول الاستیک کاهش می یابد.
با روش آزمایش در مقیاس کوچکتر مانند تکنیک دستکاری میکروسکوپی (به عنوان مثال
حداکثر بار مبدل ~ 100 گرم) می توان برای تعیین قدرت و مکانیکی استفاده می شود
تغییر شکل رفتار ذرات کوچک و ضعیف است. ذرات را می توان بین فشرده
انتهای صاف از الیاف شیشه ای (پروب دستکاری میکروسکوپی) و یک سطح شیشه ای (پایین شیشه ای
محفظه حاوی ذرات خاص) با استفاده از تکنیک دستکاری میکروسکوپی و
استفاده از تئوری مکانیک تماس برای تعیین خواص مکانیکی خود را. برای
مثال، ذرات کوچک دارویی الاستیک و پلاستیک (قطر <200 میکرومتر) فشرده شدند
توسط دستکاری میکروسکوپی برای تعیین مدول، سختی و استرس پارگی اسمی جوان
توسط دستکاری میکروسکوپی [91] انجام شد. مدول یانگ به عنوان یک تابع از فشرده سازی
با سرعت و نیروی آرامش برای آگارز ویسکوالاستیک حتی کوچکتر مشخص شد
میکروسفیرها (قطر متوسط ​​15-22 میکرون). [92]
2.6.3 نمونه هایی برای خواص اصطکاک ذرات determinationof
، تعداد محدودی از مطالعات با توجه به وجود دارد تعیین ضرایب اصطکاک به عنوان
پارامترهای ورودی برای DEM. به عنوان مثال، با استفاده از مدل هرتز تماس با Mindlin اجرا
به نرم افزار EDEM، ارزش اصطکاک استاتیکی و آلیاژها باید تعریف شود. شخص مدت
اصطکاک نسبت نیروی مماسی به بار برای دو بدن مورد استفاده در جهت عادی در است
تماس هنگامی که جنبش اولیه از سطوح تماس در دست بررسی است. مدت
اصطکاک جنبشی (اصطکاک لغزشی) نسبت نیروی مماسی حالت پایدار به بار است
64
برای دو سطح اعمال در جهت در حال حاضر در جنبش متقابل است. نورد
اصطکاک relatesto تعامل بین دو سطح که در آن یکی از آنها است نورد بدون
لغزش [97]. ضریب اصطکاک نورد حساب برای مقاومت نورد
حرکت یک جسم در تماس با بر دیگری. این در ابتدا در کد DEM اجرا شد به
دلیل تماس بین مواد دگردیس حساب برای ضرر و زیان های هیستریک. در حال حاضر آن است
به طور کلی اجرا به حساب برای مقاومت در برابر نورد با توجه به غیر کرویت از
ذرات [98].
با استفاده از یک سلول برشی (کد عکس. فصل 3)، زاویه اصطکاک داخلی موثر و داخلی
ضریب اصطکاک canbe برای اندازه گیری هر دو ذره ذره و مواد ذره دیوار.
این است که تعیین منبع عملکرد تولید شده توسط در حال بارگذاری عمودی تکراری از فله انجام
شده توسط مواد تنش نرمال و کاربرد تغییر شکل برشی. با این حال، این فله است
اندازه گیری تحت شرایط تثبیت و با توجه به تعریف اصطکاک برای
DEM به عنوان شخص و آلیاژها، اقدامات سلول برشی ترکیبی از دو واژه. با استفاده از
چنین دستگاه هایی است یک موضوع که چگونه به جدا دو و به "ترجمه" این فله وجود دارد
اندازه گیری در شرایط نیمه استاتیک به سطح خرد ذره ذره و یا ذرات دیوار
ضرایب.
اندازه گیری برای ضریب اصطکاک جنبشی و نورد اصطکاک برای توسعه داده شده است
قرص و کپسول های دارویی. tribometer پین بر ​​روی دیسک برای اندازه گیری جنبشی مورد استفاده قرار گرفت
اصطکاک بین قرص و بستر قرص (فلزات و یا پلیمرهای) ضرایب اصطکاک جنبشی [97].
این سیستم در شکل 2.19 نشان داده شده. قرص واحد در پین عمودی چسب است و
در برابر دیسک دوار عمودی لود (5 N) (سانتی متر 1.0 بازدید کنندگان
-1
). نیروی برشی اقدام به پین
ایجاد از طریق تماس با کشویی از مصرف قرص، با دیسک اندازه گیری و از آن استفاده شود به
محاسبه ضریب اصطکاک جنبشی برای هر combinati
ترجمه، لطفا صبر کنید ..
 
زبانهای دیگر
پشتیبانی ابزار ترجمه: آذرباﻳﺠﺎﻧﻰ, آلبانیایی, آلمانی, اردو, ارمنی, ازبکی, استونيايی, اسلواکی, اسلونیایی, اسپانیایی, اسپرانتو, افریکانس, امهری, اندونزی, انگلیسی, اودیه (اوریه), اویغوری, ايسلندی, اکراينی, ایتالیایی, ایرلندی, ایگبو, باسکی, برمه\u200cای, بلاروسی, بلغاری, بنگالی, بوسنیایی, تاتار, تاجیک, تاميلی, تايلندی, ترکمنی, ترکی استانبولی, تلوگو, جاوه\u200cای, خمری, خوسایی, دانمارکی, روسی, رومانيايی, زولو, ساموایی, سبوانو, سندی, سوئدی, سواهيلی, سوتو, سودانی, سومالیایی, سینهالی, شناسایی زبان, شونا, صربی, عبری, عربی, فارسی, فرانسوی, فريسی, فنلاندی, فیلیپینی, قرقیزی, قزاقی, كرسی, لائوسی, لاتين, لتونيايی, لهستانی, لوگزامبورگی, ليتوانيايی, مائوری, مالايی, مالاگاسی, مالایالمی, مالتی, مجاری, مراتی, مغولی, مقدونيه\u200cای, نروژی, نپالی, هاوایی, هلندی, همونگ, هندی, هوسا, ولزی, ويتنامی, يونانی, پرتغالی, پشتو, پنجابی, چوایی, چک, چینی, چینی سنتی, ژاپنی, کاتالان, کانارا, کرئول هائیتی, کردی, کره\u200cای, کرواتی, کلینگون, کینیارواندا, گاليک اسکاتلندی, گالیسی, گجراتی, گرجی, یدیشی, یوروبایی, ترجمه زبان.

Copyright ©2024 I Love Translation. All reserved.

E-mail: